Методы математического описания элементов и систем управления

Алгоритмические звенья, которые описываются обыкновенными дифференциальными уравнениями первого и второго порядка, получили название типовых динамических звеньев. Наиболее часто встречающиеся звенья: безынерционное (пропорциональное), инерционное первого порядка (апериодическое), инерционное второго порядка (апериодическое или колебательное), интегрирующее, дифференцирующее, изодромное (пропорционально-интегрирующее), форсирующее (пропорционально-дифференцирующее), интегро-дифференцирующее (с преобладанием интегрирующих либо дифференцирующих свойств), запаздывающее.

Приведем примеры реальных устройств, которые соответствуют определению типового динамического звена.

Типичный пример безынерционного звена, являющегося простейшим среди всех типовых звеньев, – редуктор. Его передаточные свойства описываются алгебраическим уравнением

или

,

где k = b/a – передаточный коэффициент редуктора, который зависит от соотношения диаметров или чисел зубьев ведомой и ведущей шестерен.

Реальными интегрирующими звеньями являются электрические исполнительные двигатели постоянного и переменного тока. Дифференциальное уравнение (в операторной форме) идеального интегрирующего звена выглядит следующим образом:

,

где k – коэффициент пропорциональности, зависящий от конструктивных параметров устройства.

Запаздывающее звено передает сигнал со входа на выход без искажения его формы. Однако все мгновенные значения входной величины выходная величина принимает с некоторым отставанием (запаздыванием). Способностью задерживать сигнал во времени, не изменяя его формы, обладают многие элементы промышленных автоматических систем. В первую очередь к таким элементам относятся транспортирующие устройства – конвейеры и трубопроводы.

Уравнение запаздывающего звена

,

где t – время запаздывания.

В операционной форме передаточная функция запаздывающего звена выглядит следующим образом:

Если запаздывающее звено входит в контур системы управления, то характеристическое уравнение системы будет уже не простым алгебраическим, а трансцендентным. Решение и анализ трансцендентных уравнений связаны с большими трудностями. Поэтому часто в практических расчетах трансцендентную передаточную функцию (1.7) раскладывают в ряд Пада и, учитывая только первые два члена ряда, приближенно заменяют ее дробно-рациональной функцией:

Запаздывающие звенья в большинстве случаев ухудшают устойчивость систем и делают их трудно управляемыми.

В заключение необходимо отметить, что методика анализа, основанная на расчленении системы на типовые звенья, широко вошла в практику инженерных расчетов, выполняемых в процессе конструирования, и в настоящее время является доминирующей.

Перейти на страницу: 1 2